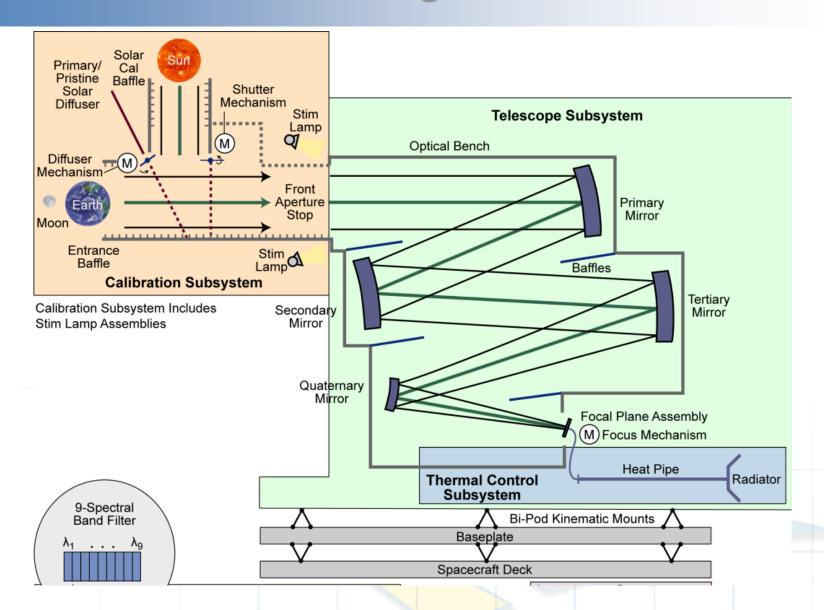
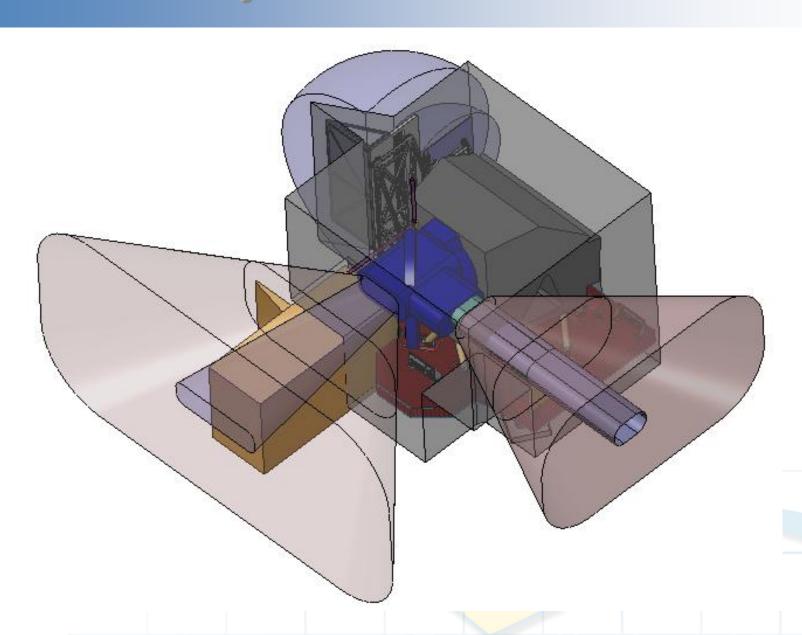
Landsat Science Team Meeting - March 1, 2011

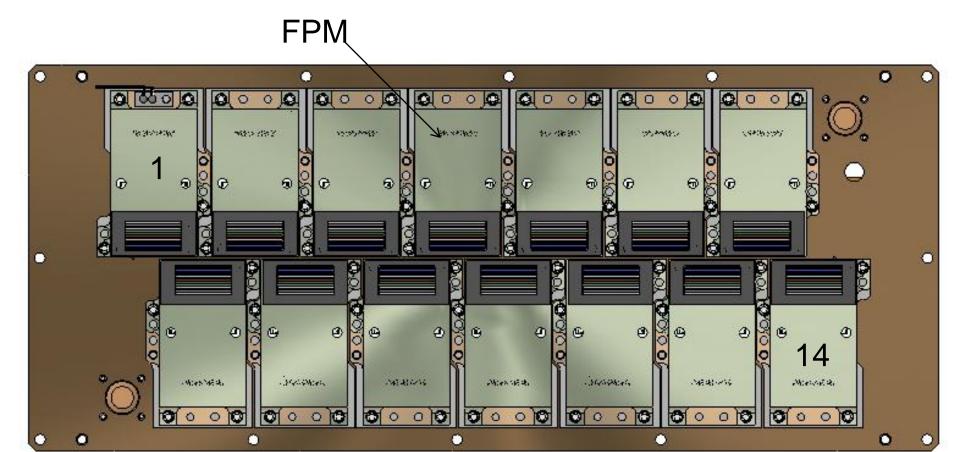
LDCM On-Orbit Cal/Val Considerations

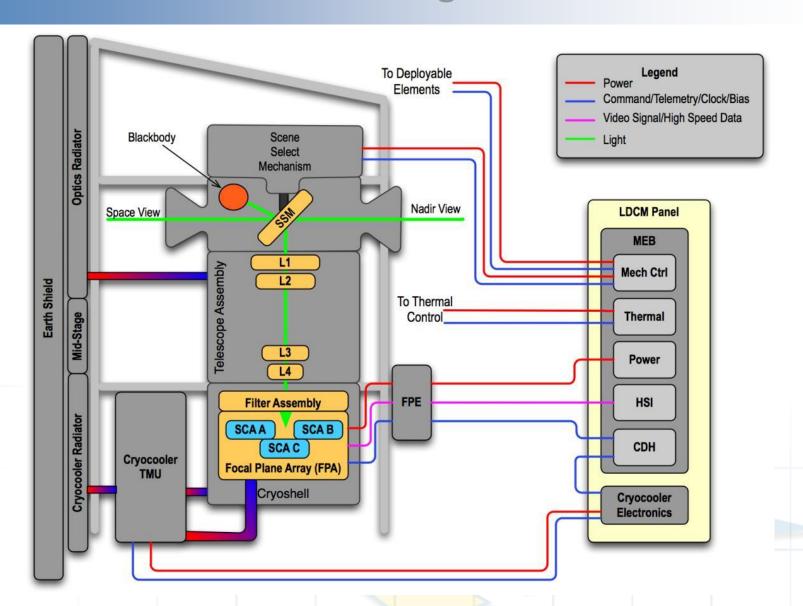

Brian Markham

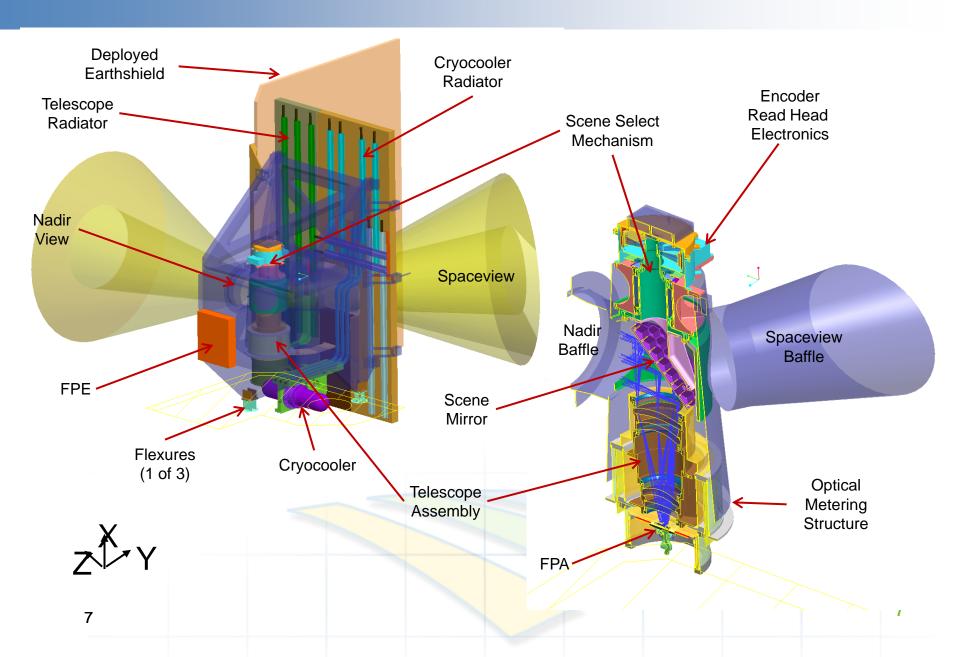
NASA LDCM Calibration Scientist/ Cal/Val Manager

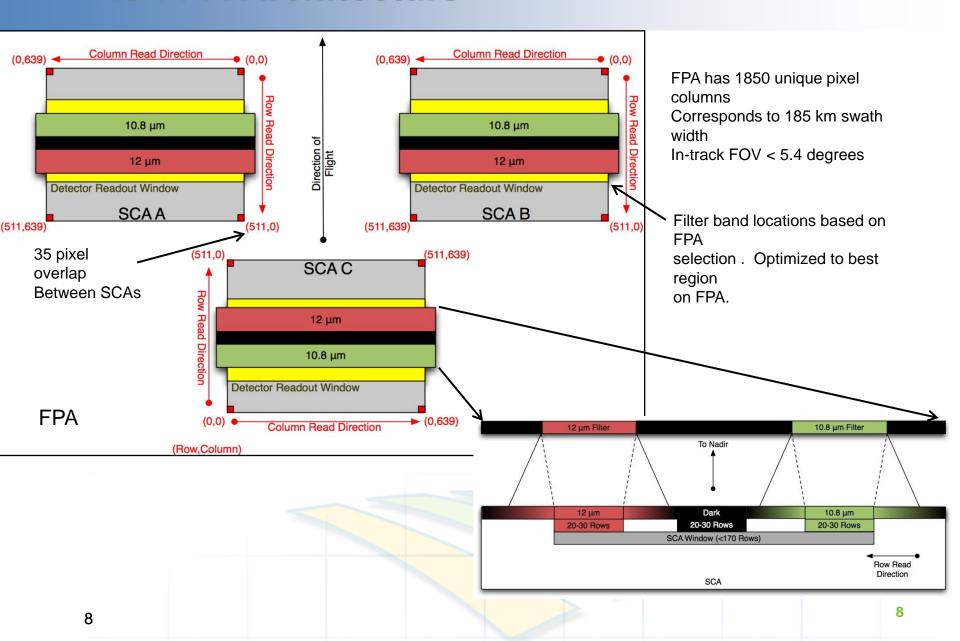

Topics

- ➤ Instrument Design Review/Calibration Implications
- Preliminary Orbit and Ascent Plan
 - Under-fly/tandem flying scenarios
- Commissioning Phase
- Calibration Activities
 - Roles
 - ➤Instrument Providers
 - ➤ Cal/Val Team/IAS
 - Acquisitions/Maneuvers
 - Analyses/Verifications
- ➤ Operations Phase
 - Calibration Activities


OLI Functional Block Diagram


OLI Cut-away


OLI FPA


TIRS Functional Block Diagram

TIRS Sensor Unit Internal View

TIRS FPA Architecture

Preliminary Orbit and Ascent Plan

Requirements:

- ➤ Mission Orbit
 - LDCM is to operate in a Sun-synchronous, near circular, frozen orbit:

»Equatorial altitude: 705 ± 1 km altitude

»Inclination: $98.2 \pm 0.15^{\circ}$

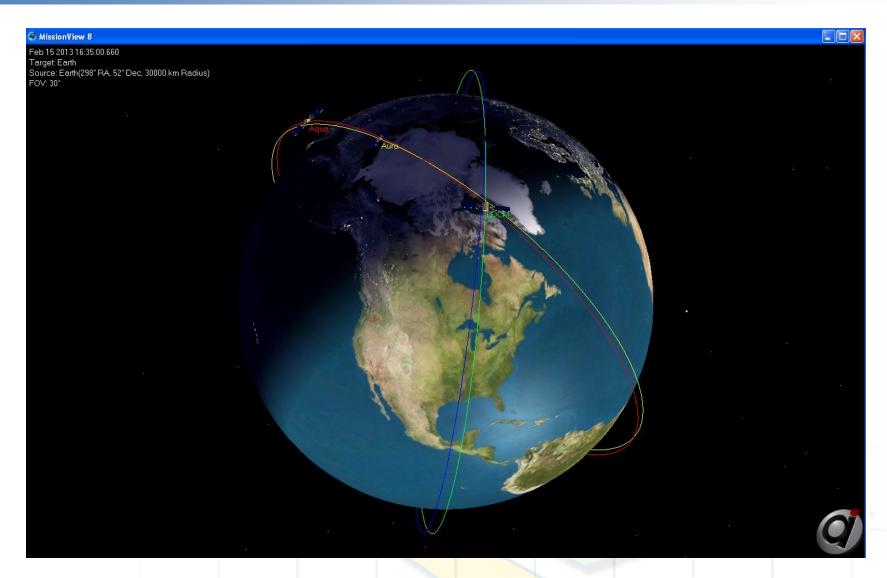
»Eccentricity: <= 0.00125

»MLT-DN: 10:00 a.m. +/- 15 minutes

»Ground track error: +/- 5 km cross track error at DN (WRS-2 grid)

»Repeat cycle: 16 days / 233 Orbits

Entry operations into the 705-km Constellation to be coordinated with Earth Science Mission Operations (ESMO)

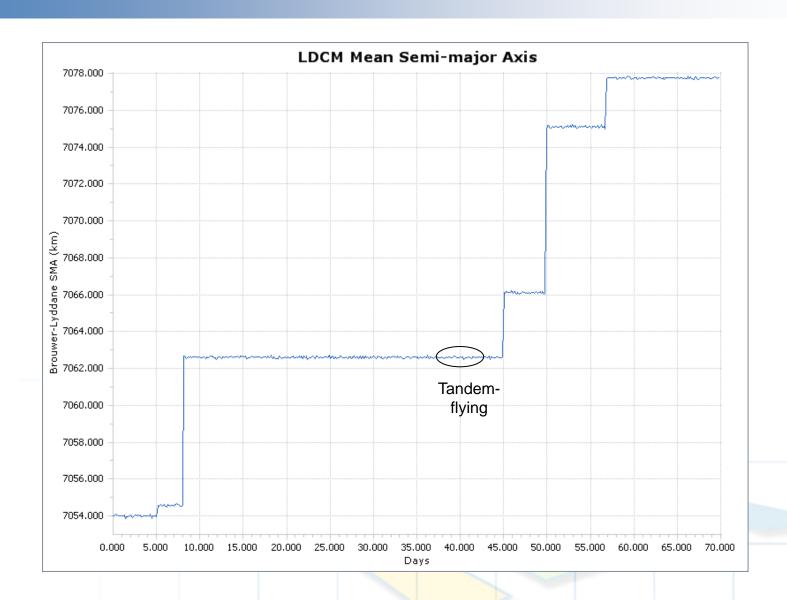

"Desirements":

Locate LDCM relative to Landsat-7 to produce at 8-day scene phasing (i.e. LDCM images same scene 8-days following Landsat-7; same as Landsat-5 orbit)

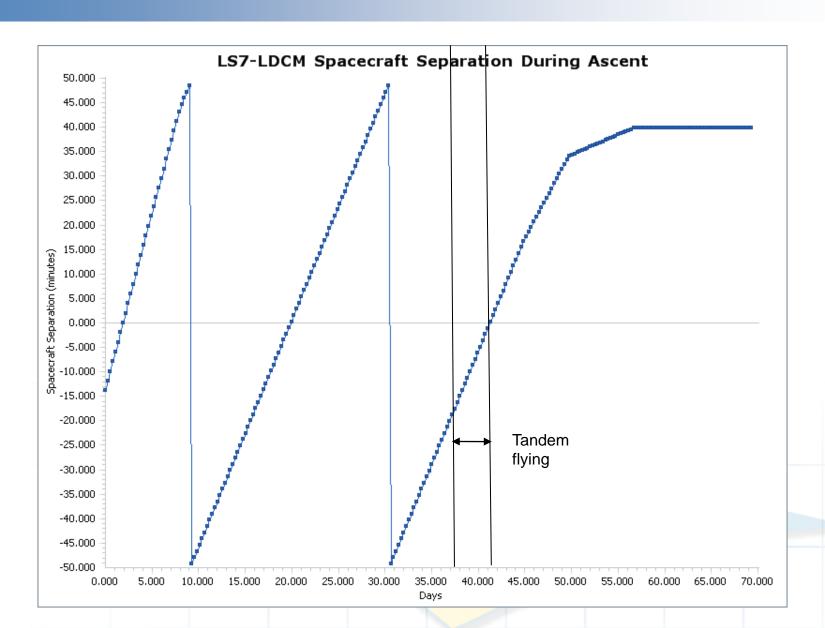
Preliminary Orbit: 8-day Phasing, 1014 MLT

- >A 8-day phase shift relative to Landsat-7 combined with an MLT shift to 10:14
 - Satisfies the mission requirements
 - Satisfies desire to have an 8-day scene phasing
 - Places LDCM at a safe distance behind the A-Train
 - 40 minutes ahead of L7
 - Terra is approximately 25 minutes behind L7
 - 7.1 minutes behind the A-Train crossing (behind Aura, the caboose)

Orbit Geometry: 8-day Phase



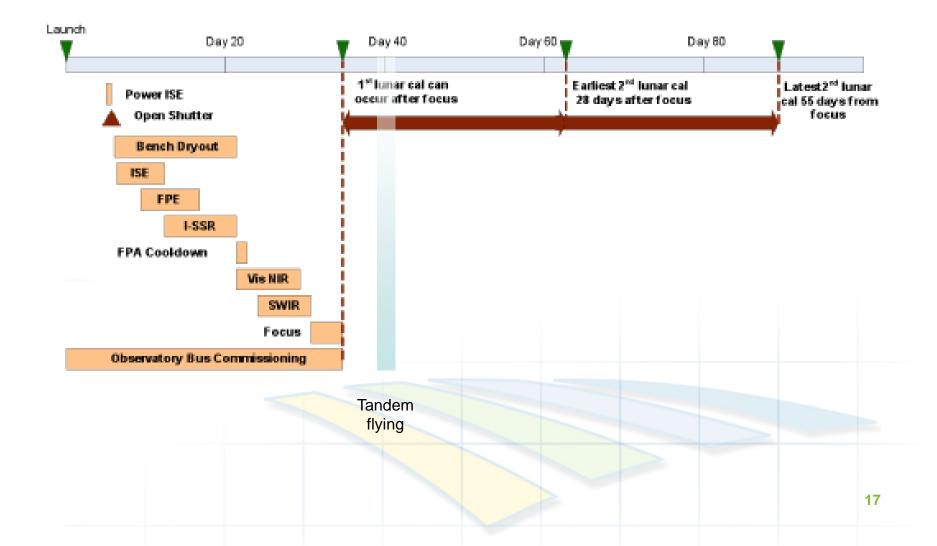
Preliminary Ascent Plan


Results

- Sun-synchronous, frozen orbit achieved with 4 ascent burns
- Final crossing is 7.1 minutes behind the A-train
- ➤ Tandem flying summary
 - Starts' on Day 38
 - >LDCM is 18.5 minutes behind L7
 - ➤ Begins flying over the adjacent path to the West of L7
 - Flies on the same path on Day 39 40
 - 'Ends' on Day 42
 - >I DCM is 0.5 minutes behind I 7
 - ➤ Ends flying over the adjacent path to the East of L7
- Offset due to ~9-minute MLT difference

Orbit Raising Profile

LDCM and L7 Separation (at node crossing)


Target Location and Ascent Planning - Going Forward

- Decide on target orbit location relative to Landsat-7
- Continue developing ascent strategy to
 - Account for variations in geometry for 16 launch dates
 - Characterize the tandem flying conditions and determine how much control we have over the timing after launch during the LEO period (to mitigate for delays in instrument tandem flying readiness
- Determine optimum injection MLT (and inclination) to account for drift during ascent
- Establish plans for multiple targets to account for multiple possibilities for location of on-orbit assets at time of LDCM launch:
 - Landsat-7 and Landsat-5 both operational (current plan)
 - Landsat-7 operational / Landsat-5 decommissioned (take L5 spot, with L7 MLT)
 - Landsat-5 operational / Landsat-7 decommissioned (take L7 spot)
 - All decommissioned (avoid the A-Train, locate with consideration of follow-on missions

Commissioning Phase Instrument Activities

- ➤ Instrument Suppliers (Ball, TIRS team) lead
 - Activation, focus (OLI)
 - Calibration Acquisitions
 - Update calibration parameters, verify performance
 - Emphasis on geometric performance
 - Changes from pre-launch verifications
- Cal/Val Team shadows instrument suppliers/conduct independent analyses

Preliminary Instrument Activation Plan (OLI)

Commissioning Phase Calibration Acquisitions-OLI

- Dark Acquisitions (twice/orbit)
 - Shutter closed
 - Long Dark 40 min (5)
- Calibration Site Imaging (all opportunities)
 - Geometric Super Sites
 - MTF sites
 - Radiometric Sites (monitored, unmonitored)
- ➤ Stim Lamp Acquisitions (working-daily, reference-several, pristine-few)
 - Working Multiple within-orbit collects, within-day collects
- ➤ Solar Calibrations (Prime (~20) and Pristine(~3))
 - Normal, Extended, Linearity Time Sweeps
 - Maneuver required
- Lunar Imaging (monthly)
 - All FPM's
 - Specific phase angle required
 - Maneuver required
- ➤ Side Slither (weekly)
 - Maneuver required
- ➤ Stellar Calibration (twice)
 - Maneuver required

Commissioning Phase Calibration Acquisitions-TIRS

Blackbody Acquisitions

- Normal (twice/orbit)
- Long Collects 40 minutes (10)
- Integration Time Sweep
- Blackbody Temperature Sweeps
- Deep Space Imaging
 - Normal (twice/orbit)
 - Integration Time Sweep
- ➤ Calibration Site Imaging (all opportunities)
 - Geometric Super Sites
 - Radiometric Sites
- ➤ Lunar Imaging (TBR)
- ➤ Side slither (TBR)

On-Orbit Relative Gain Characterization/Calibration

- ➤ Intended Primary Methods
 - OLI
 - ➤ Solar Diffuser Detector Average Responses –bias corrected (~8 days)
 - ➤ Diffuser Non-Uniformity from pre-launch characterization
 - OLI Relative gains from yaw scans of calibration sphere (DSS)
 - Diffuser non-uniformity characterized with OLI as transfer instrument

TIRS

- ➤ On-board blackbody and deep space views (2/orbit)
- ➤ Blackbody non-uniformity characterized with TIRS as transfer instrument
- Alternate methods
 - Side-slither—within FPM (monthly to quarterly) TIRS [TBR]
 - FPM overlap statistics between FPM's (acquired every scene)
 - Cumulative Histograms (acquired every scene- analyzed weekly to monthly)
 - Stim lamp statistics (acquired daily) OLI only

On-Orbit Absolute Calibration

≻OLI

- Radiance
 - Initial diffuser view versus predicted response from heliostat and atmospheric correction vs instrument assumed stable through launch
 - ➤ Validation/check
 - Diffuser reflectance and solar curve
 - Vicarious sites
- Reflectance
 - Prelaunch measured reflectance of diffuser
- Trends from lunar, diffuser (prime, pristine), stim lamps (prime, reference, pristine) and PICS

>TIRS

- Blackbody and deep space views
- Validation/check
 - Vicarious sites

Other On-Orbit Radiometric Characterizations

≻OLI

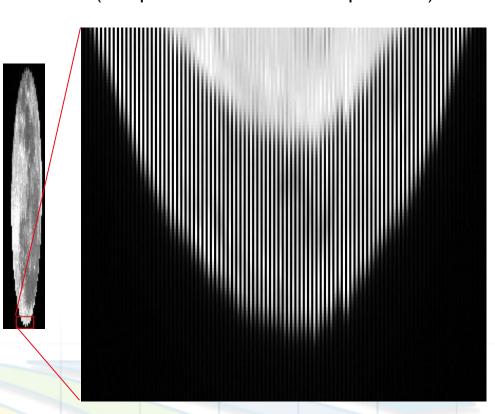
- Linearity Integration time sweeps with solar diffuser and shutter
- Noise
 - ➤ SNR-solar diffuser, stim lamps
 - ➤ Coherent and 1/f noise long darks
- Stability
 - Long darks, extended solar collects, multiple lamps per orbit, trending

>TIRS

- Linearity
 - ➤ Integration time sweeps with black body & deep space
 - Varying black body temperature over multiple orbits
- Noise
 - ➤ NEdL black body, deep space
 - Coherent and 1/f − long collects
- Stability
 - >Long collects, trending

On-orbit Spatial Characterization – Earth

- The CVT will analyze images of the Lake Pontchartrain causeway to estimate OLI on-orbit edge response slope performance
 - Same method used to monitor on-orbit L7 ETM+ MTF degradation
 - Single image results are subject to fairly large measurement error
 - ➤ ETM+ MTF estimates are repeatable to 3-9% depending on the band
 - Will require multiple cloud-free images to obtain meaningful results
 - Only provides a performance measure at one location in the OLI FOV
 - May provide only a sanity check during commissioning due to small number of usable scenes (depends on cloud cover)
- The bridge was found to be too small to be useful for Landsat 7 thermal band characterization so it will not be useable for TIRS

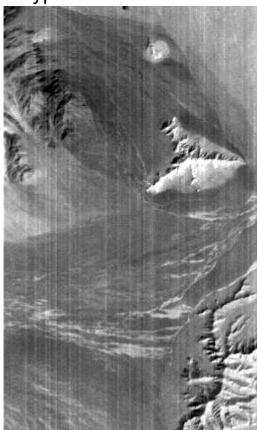

Pontchartrain Causeway (ALI pan band)

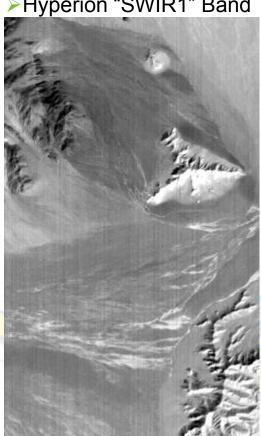
On-orbit Spatial Characterization - Lunar

- Lunar scans will also be used to estimate on-orbit spatial performance
 - Technique developed for ALI, but only tested on a few images
 - Provides along- and acrosstrack estimates from the same target
 - Better distribution across the OLI FOV than bridge target (one scan per SCA)
 - Provides results for all bands (including cirrus)
- >TIRS will also image the moon
 - May need to work around saturation issues

Lunar Scan(ALI pan band 8X oversample scan)

On-orbit Geometric Characterization and Calibration Sites


- On-orbit characterizations are performed using geometric calibration test sites where supporting data are available
 - GCPs, DEMs, DOQ or SPOT reference images
 - Site distribution is such that at least one site is visible each WRS-2 cycle day and at least 4 sites are visible over any two consecutive WRS-2 cycle days
- >BATC has been provided with a set of test sites
 - The CVT will analyze additional test sites to verify BATC results

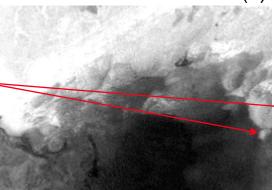

On-Orbit Band Alignment Calibration

- Band alignment calibration uses winter season desert sites to align the multispectral bands to the pan band
 - BATC special study used Hyperion data to show that this will also work for the cirrus band using sites at suitably high elevation

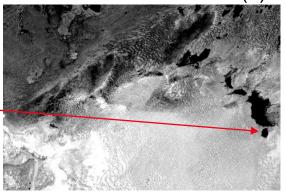
Hyperion "Cirrus" Band

➤ Hyperion "SWIR1" Band

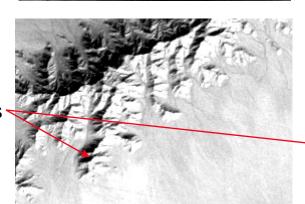
➤ GloVis Location Plot

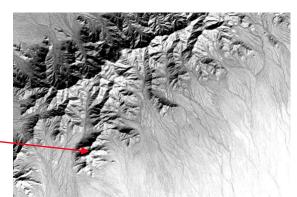


Thermal to SWIR Band Registration


Summer

High temperatures => Contrast reversal High sun angles Fewer shadows




L7 ETM+ SWIR1 Band (5)

Winter

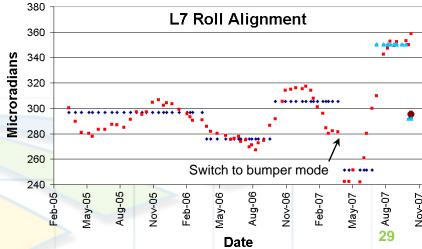
Lower temperatures Lower sun angles More (cool) shadows

Current thermal to reflective band registration performance prediction meets requirement

Calibration accuracy is a driver _____

Thermal - Reflective Band Registration					
	Allocation	CBE			
Contribution	LE90	LE90	Margin		
OLI	5.86	5.29	11%		
S/C	11.77	3.17	271%		
TIRS	12.66	11.27	12%		
Processing	3.88	3.56	9%		
OLI-TIRS Cal	23.49	1 5.93	48%		
Net	30.0	20.8	44%		

TIRS Alignment Calibration


- New algorithm developed for TIRS
 - Combines functions of two OLI heritage algorithms:
 - ➤ Focal plane calibration refine relative locations of SCAs
 - Sensor alignment calibration determine relationship between instrument and spacecraft attitude control system
- Uses TIRS-to-OLI band-to-band measurements to determine TIRS-to-OLI alignment matrix and TIRS SCA-specific adjustments
- TIRS-to-ACS alignment is determined indirectly as a composite of the TIRS-to-OLI and OLI-to-ACS alignment matrices
 - TIRS-to-OLI alignment knowledge is more important than TIRS-to-ACS alignment since it determines thermal-to-reflective band registration accuracy

Calibration Parameter On-Orbit Update

- A select set of OLI and TIRS geometric calibration parameters will be refined on-orbit if necessary
 - LOS model parameters will be updated during commissioning if necessary using OLI focal plane alignment, OLI/TIRS band alignment, and TIRS alignment calibration tools
 - These LOS model parameters will be monitored operationally but are not expected to change frequently if at all
 - L7 band alignment was updated twice on-orbit (after launch and after the scan line corrector failed)
 - The OLI-to-ACS sensor alignment calibration and the TIRS-to-OLI sensor alignment calibration will be updated during commissioning and as necessary operationally to maintain geodetic accuracy performance

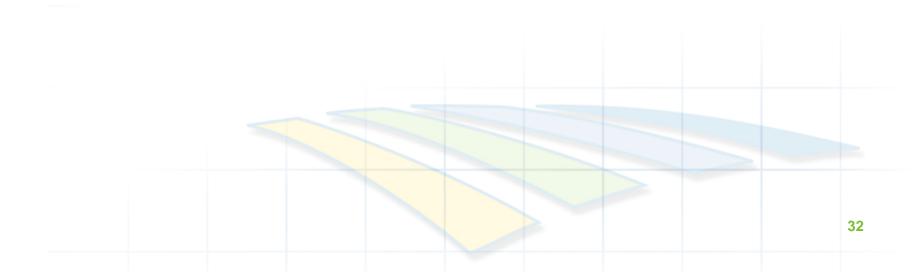
L7 ETM+ sensor alignment is updated quarterly to compensate for seasonal thermal effects

Earth orientation parameters are downloaded from USNO and updated quarterly

Operations Phase Calibration Acquisitions-OLI

- Dark Acquisitions (twice/orbit)
 - Shutter closed
 - Long Dark 40 min (quarterly
- Calibration Site Imaging (as available)
 - Geometric Super Sites
 - MTF sites
 - Radiometric Sites (monitored, unmonitored)
- >Stim Lamp Acquisitions (working-daily, reference-monthly, pristine-1/6 months)
 - Working Quarterly within-orbit collects
- Solar Calibrations (Prime (1/8 days) and Pristine(1/6 months))
 - Normal, Extended, Linearity Time Sweeps
 - Maneuver required
- Lunar Calibrations (monthly)
 - Specific phase angle required
 - Maneuver required
- ➤ Side Slither (monthly)
 - Maneuver required

Operations Phase Calibration Acquisitions-TIRS


Blackbody Acquisitions

- Normal (twice/orbit)
- Long Collects 40 minutes (quarterly)
- Integration Time Sweep (monthly)
- Blackbody Temperature Sweeps (monthly)

Deep Space Imaging

- Normal (twice/orbit)
- Integration Time Sweep (monthly)
- Calibration Site Imaging (as available)
 - Geometric Super Sites
 - Radiometric Sites (monitored, unmonitored)

Backup Slides

Routine Characterizations and Calibrations: Acquisitions

Geometric Performance

Acquisition	Band-to-Band Registration	Geodetic Accuracy	Spatial Performance
	(Within & between		
	instruments)	(Change monitoring)	
OLI Stellar			
(Commissioning Only)	X	X	
OLI Lunar			Х
Geometric Super-sites	Х	Х	
Spatial Sites			Х

Radiometric Performance

Performance	Detector-to-Detector	Long Term Stability	Absolute Calibration
Acquisition	Relative Calibration	(Change Monitoring)	(Geophys Param Retrieval)
OLI Dark (Cal Shutter)	x	X	X
OLI Solar Diffuser	Х	Х	Х
OLI Side-Slither	Х		
OLI Lamps		Х	
OLI Vicarious Sites			Х
OLI Pseudo-Invariant Sites		Х	
OLI Lunar		Х	
TIRS Dark (Deep Space)	Х	Х	х
TIRS Blackbody	Х	Х	х
TIRS Vicarious Sites		Х	х

Red - spacecraft operations (maneuver)

Blue - instrument mechanism operations

Black - scheduling only

Routine Characterizations and Calibrations: Acquisitions (con)

- Geometric Performance
 - OLI, TIRS Geometric Super Site Acquisitions (every WRS cycle)
 - OLI Stellar Observation (commissioning only)
 - OLI Lunar Observations (~monthly)
- Radiometric Performance
 - OLI
 - ➤ Shutter (2x/orbit)
 - Lamp (daily-prime; weekly-reference; twice-yearly-pristine);
 - ➤ Solar Diffuser (~weekly-prime; twice yearly-pristine)
 - Side Slither (~weekly → quarterly)
 - ➤ Lunar (~monthly)
 - Pseudo-Invariant Sites (every WRS cycle)
 - ➤ Vicarious (all opportunities during commissioning; quarterly afterwards)

TIRS

- Deep space port observations (2x/orbit)
- Blackbody Observations (2x/orbit);
- TIRS monitored sites (all opportunities)